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1. Introduction

A researcher working in a practical field has always a problem
that which distribution, out of several distributions, will be most
suitable fitted to his observed data. Fisher et. al. [2], Williams [8],
[9], Bliss [I] and many others have fitted negative binomial distribu
tion and logarithmic series distribution (LSD) to ecological and
biological data. , LSD is widely used distribution for fitting zero-
truncated discrete observed data. Recently Jain and Gupta [3] and
Jani [4] have generalized the LSD and obtained a new distribution
called the generalized logarithmic series eistribution (GLSD). For a
random variable X, the GLSD is defined by its probability function

p(z=o=MP. B) -(1.1)

where a=(-log (l-O))-!, O<0<1, P0<1 and i=l,2,
and

!(P, 0)=O, whenever ...(1.2)

The mean, the variance and the recurrence relation for higher
moments given by Jani (1977) were

(i,=ix0/(l-p0) ' ...(1.3)
[A2=a0(l_e_a04-ap02)/(l-p0)3 ...(1.4)

0(1-0) d\ir ,
i_p0 •••(I-5)

Since the GLSD (1.1) is a generalation of the LSD it is of inter
est to determine whether it may provide satisfactory fits to some
observed distributions which are not, well fitted, and th? superior fits

n
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to the data which are wellfitted, by the LSD. The paper contains
the properties of the GLSD in the Section 2. In the Section 3, the
problem of estimation of parameters by the methods of maximum
likelyhood (M.L.) and moments has been considered. The asympto
tic variances—covariances of the estimators obtained by both the
methods have been derived. The M.L. equations are very compli
cated to solve hence, in Section 4, the asymptotic eflBciency of the
method of moments relative to the M.L. method has been computed
for diflFerent values of the parameters 0 and p. It is shown that the
method of moments is an efficient as the M.L. method. I section 5,

three zero-truncated biological observed data wilh a good fit, a poor
fit and a worse fit by the LSD have been considered. All resulted in
better fits by the GLSD as measured by the test of probabilities of X^.

2. Properties of the glsd

Since the additional parameter p in GLSD (1.1) characterizes
the distribution, one has to be very careful while selecting a value
of p. We shall study a few properties of the GLSD which will help
us in fitting.

(0 For p=l, the GLSD (1.1) reduces to the usual LSD with
probability function

F{X=i)=piiQ)=aQ*li.

(//) The probability function of the GLSD of (LI) can be
written as

F{X=i)=pt(^, 0)=(ip0-0) (/p0^20)...(/p0-rp0-je+0)
^_0)<P-i/(;!. log(i-0)-i'«).

Taking limit p-^coand 0->U, such that P0remains constant,
equal to say S, we get
P(Z=0=Pt(5)=(/8)<-i. /=!, 2, ..., '
which is the probability function of the Borel distribution
with one parameter S and is a particular case of the gene
ralized Poisson distribution.

{Hi) Since the parameter p is connected with the mean and the
variance of the GLSD (1.1), a value of p must depend on
the observed mean and the variance. From (1.3) and (1.4)
we deduce that the mean is equal, greater or smaller than /
the standard deviation (s.d) according to p is equal,
smaller or greater than the term /(0)= (1 —(1—0)/2a0)/0
respectively. The Table—1 shows the values of /(0) for
different values of0.
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(/v) (1.4) shows that if P<(1—(1—0)/a0)/0=2jr(e)—1/0, then

H2<0.

(v) The identity

1=1

is, in general, exact only when the series is infinite. How

ever, the GLSD (1.1), due to (1.2), for p<l, the series is

finite and for some values of p and 0, S 1. For exam

ple, with p^O.5, O<0<1, there will be only one non-zero

term i.e. pi and in all such cases, except with very small 0,

/7i>l. Similarly, for P=0.6, there will be two non-zero

terms, for P=0.7, three non-zero terms and soon. The

Table-2 shows the adproximate values of '

Pi.

i=\

(vi) Forp0>l,'2^;;,<l.
/=1

For example, with p=2 and

0=0.9, 0.3909,

;72=0.00528, 7>3=0.00105,

P6=0.00002.

(vii) For P>1, as P0 increases the distribution will have longer
. tail. Perhaps, for this reason the observed data with short

tails are better fitted by the GLSD with 13<1 rather than

the LSD where p=l.
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TABLE 1

8 : 0.1 0.2 0.3 0.4 0.5

/(0): 5.25878 2.76856 1.9626 1.954220 1.30685

0; 0.6 0.7 0.8 0.9

/(fl): 1.15762 1.06001 . 0.99852 0.96898

P=0.1

,(«=!)

P=0.3

(H=l)

P=0.5
(«=1)

P=0.7
(«=3)

p=0.9
(«=9)

TABLE 2

Approximate values for series ^ pi
i=\

0=0.7

L04353

1.02177

1.00046

1.00002

1.00000

9=0.5

1.34608

1.17183

1.02014

1.00359

l.OOCOO

0=0.9

3.10475

1.95897

1.23612

1.10607

1.00783

3. Estimation of Parameters

The M.L. method is the most efficient method for estimating
the parameters but, sometimes, it involves so complicated forms of
M.L. equations that they are difficult to solve for M.L. estimators.
In this case, some other efficient estimators are to be find out. In
this section we will study two methods for estimating the parameters
namely the M.L. method and the method of moments.

31 The M.L. method

Consider a random sample of size N from the population (1.1)
and let Ni be the observed frequency in the sample corresponding
to X=i. Then, the liicelihood function L is given by

L= n
i=t
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Taking natural logarithm of L, differentiating w;r.t. 0and p and
equating with zero and writing SAT,=iV and S/. NilN=X, we obtain
the M.L. equations

oo ,•_!

2 I1-2 y=l

i/0-or/z=p"

i. NS$-j)= N ...(3,1)

...(3.2)

which can be solved for and Hhe M.L. estimators of 6 and p
respectively, by using an iterative technique such as the method of
scoring [6]. M.L. equations (3.1) and (3.2) do not yield explicit
expressions for the corresponding M.L. estimators 0 and p and they
are very complicated to solve for 0 and p.

The Fisher information matrix R of the M.L. estimators canbe
found to be

i?==iV[/'3,ff], ...(3.3)

where the elements rp,; p, 2 are given by.

m=(!i/0^-a®/(l-0))/(l-0)
i-l - •

,•22=^ ^ ...(3.4)
'•=2 7=1 , •

m=r2i=fA/(l-0). ,

R-^ will be the asymptotic variance-covariance matrix of M.L. esti-
A. . ^ ' '

mators0 and p.

3*2 The method of moments

Since [A2<0 for P0<I—(1—0)/a0, in the following we will
obtain the moment estimators of the parameters of the GLSD for the
restricted sample space 1—(I—0)/oc0<p0< 1.

• From (1.3) and (1.4) we have

a202-e(l-0)=O.- ...(3.5)

where

g=(x3/((i.2+ (X2) ...(3.6)

The equation (3.5) can be solved for 0 by using the method of
iterations. To obtain the initial value of 0, expanding a=.(—Jog
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(1—0))~i into power series expansion and neglecting 0® and terms
higher than that we get (3.5) as

02_12(g-l)(l-6)=O

which gives, for 0>O.

6=2(v'(e'(G\+l))-e'), -(3-7)

where Q'=3(g -1) and <2 is as given by (3.6).

To get 0*, the moment estimator of 0, [x and (Jig are to be replaced by
their respective estimates sampIemeanZand sample variance 5^ of the
observed data.

Using (1.3) and replacing [a by R, we get

.:.(3.8).

Using the. differential method [5] we obtain the asymptotic
variance—covariance matrix M of the moment estimators 0* and P*,

\

to the order N''^, as

M=N-nmvul •••(3-9)

The elements mpq; p,q=-\,l are given by

(^2 ^+2ACii3)IB^
«ji2=m2i = I'./mi+«('4(Aa+C'[J.3)/(5(i2) ...3(.10)

m22=2D.mi2 —

where

^=[i(l-0)(3ix(l-0)-2a202)

\B=2a20 (ix2+|x2) (l-0-a0) + (x3 (J _0)

C=_a202 (l-0) ...(3.11)

£» = a2/((l (1-0))-1/02.

4, COMPARISION OF ASYMPTOTIC EFFICIENCIES

The joint asymptotic efiBciency E of the moment estimators
/V.

(0*, p*) relative to the M. L. estimators (0, P), discussed in Section'3,
is given by

£=l/( U 1 . I M 1), ...(4.1)

where [ A' [ is the determinant of a matrix X.
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Considering the restricted sample space 1—(1—6)/a0^P0<l,
the asymptotic efficiency E, has been computed for (3=0.93, 1.00,
1.03 and 2.03 and 0=0.1 (0.2) 0.7 and tabulated in Table 3. The
table shows that the method of moment is equally efficient as the
M.L. method and hence one can safely use this simple method in
place of M.L. method for fitting the GLSD.

TABLE 3

The asymptotic cfBcicncies (in %) of tlie raetliod of moments
relative to tlie M.L. method

p 0 0.1 0.3, 0.5 0.7

0.93 100 100 98.4 90.9

1.00 99.3 97.2 94.8 91.5

1.03 98.9 95.4 90.6 81.9

2.03 88.6 70.0

5. Fitting to the GLSD

We have fitted the GLSD. (1.1) to many zero-truncated
biological data and observed that in most of the cases the GLSD
provides a better fit than the usual LSD. Here we present data
obtained from three different samples where the fits by the ISD are
good, poor and worst. In all the cases the GLSD gives better fit
than the LSD. Since the M.L. equations are complicated and the
method of nioments is equally efficient we have used the moment
estimators for fitting the GLSD. The comparision between two fits,
the fit by the LSD and the fit by the GLSD, is done on the basis

i<)of the values of the probability integrals of the values

at respective degrees of freedom (D. F.) v.

The data given in Table 4 are the zero-truncated data of
P. Garman on Counts of the number of european red mites on
apple leaves where there isa good fit by the LSD. But as measured

by the probabilities of two ,P^ ^due to the LSD fit is
0.40 while ( Xi j due to the GLSD fit is 0,69, the fit by the
GLSD is superior than the fit by the LSD.
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Table 5 shows the zero-truncated data ofhaemaycytometer
yeast eel] counts per square observed by Student [7] where the fit
by the LSD is poor. Our fit by theGLSD is better than the LSD

since P̂ xl jdue to the GLSD fit is 0.15 while P1^4) due
to the LSD fit is only 0.06.

Table 6 consists of data on F. nubilalis (European corn borer)
of McGuire et. al (1957) and two fits, one by the LSD and another
by the GLSD. Here ^Xg j due to the LSD fit is zero while
P( Xi ]due to the GLSD fit is 0.07. This shows that the fit by the
LSD is worst while there is a good fit by the GLSD.

TABLE 4

Counts of the european redmites on apple leaves. (The zero-
truncated data of P. Garman)

No. ofmites
per leaf

1

2

3

4

5

6

7

Total
Mean
s.d.

D.F. (V)

^( "0
Estimates 0 :

P:

Leaves observed

SO
2.1500
1.4504

Expectedfrequency

80.00

1.81
2

0.40 "

0.7473

GLSD

39.10

17.40

9.73

5.83\

3.55

1.271

0.95^

80.00

0.16
1

0.69

0.8898
0.9129
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TABLE 5

Zero-truncated data of Haeniaycytonieterye yeast cell counts
per square observed by 'Student' [7]

Expectedfrequency
No. of cells Observed No.
per square of squares

LSD GLSD

1

2

3

4

5

6.

128

37

18

3

1

0

133.66

34.11

11.61

4.421

1.81

1.39

128.19

38.84

13.73

4.75'

1.45

0.04J

Total 187 187,00 187.00
Mean 1.4599
s.d. (0.7776
X' 5.73 2.22
D.F. (v) 2 2

r(xl) 0.06 .0.15
^ /

Estimates g: 0.5104 0.7135
P: 0.8536

TABLE 6

Zero-truncated'data on P. nubilalis (European corn borer)
of Mc. Guire et. al. (1957)

No. of bores Observed
Expectedfrequency

per plant frequency
LSD GLSD

1

2

3

4

Total
Mean
s.d.

D.F. (v)

Estimates 6 ;

83

36

14

2;-

1.!

136
1.5441
0.7969

99.16

24.18

7.87

2.88;

1.9li

136.00

13.85
2

0.00

0.4878

86.91

30.38

12.34

4.88T

1.493

136.00

3.22
1

0.07

0.7895
0.8510
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Summary

The GLSD is a gen^alization •;!of ^the LSD and contains an
additional parameter which characterizes the distributio|l'f A few
important properties, depending on the values of the additional
parameter, have been discussed. Two methods, the maximum
likelihood and moments, of estimating the parameters of the GLSD
has been discussed. The variances and the covariances of the
estimators in both the cases have been obtained.' The asy^mptotic
efficiencies of the method of moments rela:tive to the maximum
likelihood method have been derived and computed for a set of
values of parameters. It is observed that the method ofmoinents is
as efficient as the maximum likelihood method. For fitting purpose,
data obtained from three different samples, good fit, a poor fit and a
worse fit by the LSD have been considered. All have been resulted
in better fits by the GLSD.

[1] Bliss, C.I. (1963)

[2] Fisher, R.A., Corbet, A.S.
and Williams, C.B. (1943)

[3] Jain, G.C. and Gupta,
R.P.(1973)

[4],Jani,P.N.(1977)

[5] Kendall, M.G. and
Stuart, A. (1969)

[6] Rao, C.R. (1974)

[7] 'Student' (1907)

[8] Williams, C.B. (1944)

[9J Williams, C.B. (1947)

References

Fitting the negative binomial distribution to
biological data. Biometrics, 9,176-200.
The relation between the number of species and
the number of individuals in a random sample
of an animal population. Journal of animal
ecology, 12, 42-57.

A logarithmic type distribution. Trabjos
Estadist, 24, 99-105.
Minimum variance unbiased estimation for some
left—truncated modified power series distri
butions, Sankhya, B, Vol. 39, 258-278.

'The advanced theory of Statistics' Vol. 1,
Charles Griffln and Co., London.

'Linear Statistical Inference and its Appli
cations', Willey Estern Pvt. Ltd., NewDellii.
•On the error of counting with haeinaycy-
tometer'. Biometrika, 5, 351-360.

Some applications of the logarithmic series and
the index of diversity to ecologicaljproblems. Jr.
of Ecology, 32,1—44.

'The logarithmic series and its applications to
biological problems. Jr. of Eccnogy, 34,
253-272.


