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1.. INTRODUCTION

A researcher working in a practical field has always a problem
that which distribution, out of several distributions, will be most
suitable fitted to his observed data. Fisher ez. al. [2], Williams [8],
[9], Bliss [1] and many others have fitted negative binomial distribu-
tion and logarithmic serics distribution (LSD) to ecological and
biological data. . LSD is widely used distribution for fitting zero-
truncated discrete observed data. Recently Jain and Gupta [3] and
Jani [4] have generalized the LSD and obtained a new distribution
called the generalized logarithmic series eistribution (GLSD). For a
random variable X, the GLSD is defined by its probability function

. - P .
P(X=1)=p> 0) = i @101, e (LD)
where  a=(—log (1—0))7, 0<6<1, o<1 and i=1,2, ......
-and : '
(8, 9)=0, whenever iB—i+1<0 (Y

The rhean, the variance and the recurrence relation for higher
moments given by Jani (1977) were

p=a0/(1—p0) , o (1.3)

ua=a(1 —0— o +-aB62)/(1—F6)? (L.4)
[‘Lr+1=’%% %Lé-f-r- Haltr—1 4 ' ...(1.5)

Since the GLSD (1.1) is a generalation of the LSD it is of inter-
est to deterinine whether it may provide satisfactory fits to some
observed distributions which are not , well fitted, and the stperior fits
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to the data which are wellfitted, by the LSD. The paper contains
the properties of the GLSD in the Section 2. In the Section 3, the
problem of estimation of parameters by the methods of maximum
likelyhood (M.L.) and moments has been considered. The asympto-
tic variances —covariances of the 'estimators obtained by both the
~ methods have been derived. The M.L. equations are very compli-

cated to solve hence, in Section 4, the asymptotic efficiency of the
method of moments relative to the M.L. method has been computed
for different values of the parameters 6 and B. It is shown that the
method of moments is an efficient as the M.L. method. I section 5,
- three zero-truncated biological observed data with a good fit, a poor
fit and a worse fit by the LSD have been considered. All resulted in
better fits by the GLSD as measured by the test of probabilities of X2.

2. PROPERTIES OF THE GLSD

Since the additional parameter B in GLSD (1.1) characterizes
the distribution, one has to be very careful while selecting a value
of B. We shall study a few properties of the GLSD which will help
us in fittiog.

(i) For p==1, the GLSD (l.1) reduces to the usual LSD with
probability function
P(X=i)=p;(0)=0abi/i.

(ii) The probability functlon of the GLSD of (1.1) can be
written as
P(X=i)=pd@, 6)=(iB0—0) (iB0—20)...(iB0—iB0—i0-+6)
(1—0)B-1/(i!. log (1—0)~1/¢),
Takmg limit —>ocoand 6—>U, such that B9 remains constant,
equal to say &, we get )
P(X==p{B)=(id)"1. e~*¥/i), i=1, 2, ...,

which is the probability function of the Borel distribution
with one parameter § and is a particular case of the gene-
ralized Poisson distribution.

(iif) Since the parameter § is connected with the mean and the
~ variance of the GLSD (1.1), a value of § must- depend on
the observed mean and the variance. From (1.3) and (1.4)
we deduce that the mean is equal, greater or smaller than i
the standard deviation (s.d) according to B is equal,
smaller or greater than the term f(8)= (1—(1—0)/2a6)/6
respectively. The Table— 1 shows the values of f(0) for
different values of 0.
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(%) (1.4) shows that if B<(1=(1—6)/at)/0=2f(0)—1/6, then
- pa<<O. ' '

(v) The identity

i=1

' is, in general, exact only when the series is infinite. How- -
ever, the GLSD (1.1), due to (1.2), for B<1, the series is -
finite and for some values of § and 6, = p;>1. ‘Fof_ exam- J
'ple, with B<0.5, 0<b<1, there will be oniy one non-zero
term i.e. py andin all such cases, except with very small 0, -
p1>1. -Similarly, for B=0.6, there will be two non-zero .
terms, for $=0.7, three non-zero terms and soon: The
Table-2 shows the adproximate values of - .

n .
Sr
=1 ,

)

(vi) For pe>1,'z n<l.
i S |

For example, with B=2 and

6=0.9, - P1=0.3909,
p2==0.00528, 'p3=0.00105,

ps=0.00002.

(vii) For B>>1, as B0 increases the distribution will have longer
tail. Perhaps, for this reason the observed data with short
 tails are better fitted by the GLSD with f<(1 rather than
. th_e LSD where f=1. '
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’

TABLE 1
9: 0.1 0.2 0.3 0.4 0.5
fe: 5.25878 2.76856 1.9626 1.954220 1.30685
0: 0.6 0.7 0.8 . 0.9
10y 1.15762 1.06001 . 0.99852 0.96898

TABLE 2

Approximate values for series z Pi

i=1
8=0.1 - 8=0.5 0=0.9

B=01 - 1.04353 1.34608 3.10475
n=1)
g=0.3 1.02177 1.17183 195897
(n=1) :
B=0.5 1.00046 1.02014 . - 1.23612
(n=1) ' .
B=0.7 1.00002 1.00359: 1.10607
(n=3) . .
8=0.9 1.00000 1.00000 7 1.00783
(n=9) )

3. ESTIMATlON OF PARAMETERS

- The M.L. method is the most efficient method for estimating
the parameters but, sometimes, it involves so complicated forms of
M.L. equations that they are difficult to solve for M.L. estimators.
In this case, some other efficient estimators are to be find out. In
this section we will study two methods for estimating the parameters
namely the M.L. method and the method of moments.

31 The M.L. method

Consider a random sample of size N from the population (1.1)
and- let N; be the observed frequency in the sample correspondmg
to X=i. Then the likelihood function L is given by .

I L=1 piNis

=t
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Taking natural logarithm of L, dlﬂ'erentlatmg w.r.t. 6and B and
equating with zero and writing ZN,—-N and Zi. NiJN=2X, we obtam
the M.L. equations - .

o 1—1 o : - \_“ 7 - '
2 z P NIB-D=NEE 6D
i=2  j=1 . .

1fo—ajX=f T ) 2)

Wthh can be solved forﬁ and Bthe M L. estimators of 6 and B
respectively, by using an iterative technique such as the method of
scoring [6]. M.L. equations (3.1) and (3.2) do not y1eld explicit
expressxons for the correspondmg M.L. estimators 0 and B and they
are very complicated to solve for [} and [3

The Fisher mformatlon matrix R of the M.L. estlmators can be'
found to be :

R=N[rpd, E | - R j C..(33)
- where the elements ry, D, q=l 2 are given by.

- rin=(1/02— a?/(l e))/(l )

lzz—z E i p,/(zﬁ—])2 _ o ....-(3.4)
ramrermi1—0), -

R'1 w1ll be the asymptotlc variance-covariance matrlx of M. L estl- .
mators § and. B ‘

32 The method of moments

Since pe<0 for PO<I—(1— 0)/a6, in the followwg we will :
obtain the moment estimators of the parameters of the GLSD for the

restricted sample space ¥ — (1—0)/«6<B0<1
* From (1.3) and (1.4) we have _
. a2—Q(1—0)=0. . B8
where | _ . - . l - ' | S
O=p3/(u2+us) N . X))
The equation (3.5) can be solved for 0 by using the ‘'method of
- iterations. To obtain the 1u1t1al value of 6 expandmg a==(~—log
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(1—8))! into power series expansion and neglecting 6% and terms
higher than that we get (3.5) as

92—12 (Q—1) (1—6)=0
which gives, for 9>0

b= 2(\/(Q (@' +1)-Q), - (3.7
where Q'=3(Q—1) and Q is as given By (3.6).

To get 0*, the moment estimator of 0, . and p, are to be replaced by
their respective estimates samplemean X and sample variance S* of the

observed. data. _
Using (1.3) and replacing p by X, we get
B*=1/0% —a*/X ' 4 - .(3.8).
Using the differential method [5] we obtain the asymptotic
variance——covgriance matrix ‘M of the moment estimators 6* and B*,
to the order N-1, as
M= N~1[mp,]. .--(3.9)

The elements #2pq ; p, g=1, 2 are given by
m11==(A2uz+C"’( pa—tt, )+2AC#3)/B2

miz=ms1=D.m11+a(dps+ Cus)/(By?) ..3(.10) -
m22=2D.m1z—D2.m11—’r al.pofta
where
| A=y (1—6) (3¢ (1—6)—24202)
" B=2020 (p2+ps) (1—8—aB)+up3 (1—0)
C=—o202 (1—0) (3.11)
D=a2l( (1-0))—1/02.

4, COMPARISION OF ASYMPTOTIC EFFICIENCIES
The joint asymptotic efficiency E ofl the moment estimators
(0%, B*) relative to the M. L. estimators (6 B), discussed in Section’3,
is given by
E=1/(IR|.I1M)), ‘ . (4.1)
where | X | is the determinant of a matrix X. '
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Considering the restricted sample space 1—(1—6)/a0<B0<],
the asymptotic efficiency E, has been computed for $=0.93, 1.00,
1.03 and 2.03 and 6=0.1 (0.2) 0.7 and tabulated in Table 3. The
table shows that the method of moment is equally efficient as the
M.L. method and hence one can safely use this simple method in
place of M.L. method for ﬁttmg the GLSD.

TABLB 3

The asymptotic efficiencies (in %) of the method of moments
relative to the M.L. method :

B0 ‘ 0.1 i 0.3 ‘ 0.5 ' 0.7
0.93 100 100 98.4 909
1.00 99.3 97.2 94.8 91.5
1.03 98.9 95.4 90.6 81.9
2.03 88.6 70.0

5. FrrminGg 1o TRE GLSD

, We have fitted the GLSD.(l.1) to many zero-truncated
biological data and observed that in most of the cases the GLSD
provides a better fit than the usual LSD. Here we present data
obtained from three different samples where the fits by the ISD are
good, poor and worst. In all the cases the GLSD gives better fit
than the LSD. Since the M.L. equations are complicated and the
method of moments is equally efficient we have used the moment
estimators for fitting the GLSD. The comparision between two fits,
the fit by the LSD and the fit by the GLSD, is done on the basis

of the values of the probability integrals of the X2 values { P( x,f );
at respective degrees of freedom (D. F.) v.

The data given in Table 4 are the zero-truncated data of
P. Garman on Counts of the number of european red mites on
apple leaves where there is a good fit by the LSD. But as measured

by the probabilities of two xf,P( X:) due to the LSD fit is

0.40 while P ( xf) due to the GLSD fit is 0.69, the fit by the
GLSD is superior than the fit by the LSD.
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Table 5 shows the zero-truncated data of haemaycytometer
yeast cell counts per square observed by Student [7] where the 1 fit
by the LSD is poor. Our fit by the GLSD is better than the LSD
since R( xf ) due to the GLSD fit is 0.15 while P( Xg ) due
to the’ LSD fit is only 0.06.

Table 6 consists of data on P. nubilalis (European corn borer)
of McGuire er. al (1957) and two fits, one by the LSD.and another
by the GLSD. Here P ( 1 ) due to the LSD fit is zero while

P ( xf ) due to the GLSD fit is 0.07. This shows that the fit by the

LSD is worst while there is a good fit by the GLSD.

TABLE 4

Counts of the european red mites on apple leaves. (The zero~
truncated data of P. Garman)

\

. Expected frequency
Nab:{ I’en ‘;}es Leaves observed
LSD GLSD
1 38 43.46 39.10
2 17 . 16.24 17.40
3 10 : 8.09 9.73
4 9 4.53 . 5.83
5 3 2.712 3.55
6 2 1.69 2.17
7 1 1.08 1.27
= 8 0. 2.20. 0.95
Total | 80 80.00 . - 80.00
Mean 2.1500 ’
s.d. 1.4504
" 1.81 0.16 -
D.F. (v) : 2 1
P ( x2 ) _ 0.40 ' 0.69
Estimates 6 : 0.7473 0.8898
B: ) , 0.9129
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Zero-truncated data of Haemaycytometerye yeast cell counts

TABLE 5

per square observed by ‘Student’ [7]

Expected frequency
No. of cells Observed No.
per square of squares
I LSD GLSD
1 128 133.66 '128.19
2 37 34.11° 38.84
3 18 11.61 13.73
4 3 4,42 4.75
5 1 1.81 1.45
> 6 0 1.39 0.04
Total 187 187.00 187.00
Mean 1.4599
s.d. 0.7776
Xz 5.73 2.22
D.F. (v) 2 2
P ( 2 ) : 0.06 0.15
Estimates ¢ : 0.5104 0.7135
: 0.8536
TABLE 6

Zero-truncated-data on P. nubilalis (European corn borer)

of Mc. Guire et. al. (1957)

’ " Expected frequency
No. of bores Observed
per plant . frequency —
LSD GLSD
1 83 99.16 86.91
2 36 24,18 30.38
3 14 787 12,34
4 2} 2.8_8} 2 4.88}
= 5 1 1.91 1.49
Total 136 136.00 136.00
Mean 1.5441
s.d. 0.7969
pAd 13.85 3.22
D.F. (v 2 1
P ( 22 ) 0.00 0.07
0.4878 0.7895

Estimates 6 :

0.8510
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SUMMARY
VAP o

The GLSD is a gengalizatio1i'3:of sthe LSD and contains an
additional parameter which cha_r‘q_cteriigst'f,the distr_igqiiop‘.' A few
important properties, depending on the values of the additional
parameter, have been discussed. Two methods, the maximum
likelihood and moments, of estimating the parameters of the GLSD
has been discussed. The variances and the covariances of the
estimators in both the cases have been obtained.” The asymptotic
efficiencies of the method of moments relative to the maximum

_likelihood method have been derived and computed for a set of
_values of parameters. It is observed that the method of moitients is

as efficient as the maximum likelihood method. For fitting purpose,
data obtained from three different samples, good fit, a poor fit and a

. worse fit by the LSD have been considered. All have been resulted

in better fits by the GLSD.
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